Exercise 13

Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.

$$
p(v)=2 \sqrt{3 v^{2}+1}, \quad a=1
$$

Solution

By definition, a function is continuous at a number a if

$$
\lim _{v \rightarrow a} p(v)=p(a) .
$$

Evaluate the function at $v=1$.

$$
p(1)=2 \sqrt{3(1)^{2}+1}=2 \sqrt{4}=4
$$

Calculate the limit as v approaches 1 using the limit laws.

$$
\begin{aligned}
\lim _{v \rightarrow 1} p(v) & =\lim _{v \rightarrow 1} 2 \sqrt{3 v^{2}+1} \\
& =2 \lim _{v \rightarrow 1} \sqrt{3 v^{2}+1} \\
& =2 \sqrt{\lim _{v \rightarrow 1}\left(3 v^{2}+1\right)} \\
& =2 \sqrt{\lim _{v \rightarrow 1} 3 v^{2}+\lim _{v \rightarrow 1} 1} \\
& =2 \sqrt{3 \lim _{v \rightarrow 1} v^{2}+1} \\
& =2 \sqrt{3\left(\lim _{v \rightarrow 1} v\right)\left(\lim _{v \rightarrow 1} v\right)+1} \\
& =2 \sqrt{3(1)(1)+1} \\
& =4
\end{aligned}
$$

The condition in the definition is satisfied, so $p(v)=2 \sqrt{3 v^{2}+1}$ is a continuous function at $a=1$.

